top of page

Desenvolvimentos e Resultados

  • Estatísticas básicas

library(gstat)    

data(meuse.all)   

attach(meuse.all) 

lead

pb=lead         

summary(pb)

                      Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

                      27.00   68.75  116.00  148.60  201.80  654.00 

  • Coeficiente de correlação

data(meuse.all)

cor(meuse.all$lead,meuse.all$elev,method=c("pearson","kendall","spearman"))

                      [1] -0.1482802

  • Mapa Base dos pontos de coleta

data(meuse.all)

plot(meuse.all[,2],meuse.all[,3],xlab='eixo x',ylab='eixo y',main='Mapa base dos pontos de coleta')

points(meuse.all[,2],meuse.all[,3], col=green)

  • Histograma

data(meuse.all)

g <- meuse.all

x.norm<- g$lead

h<-hist(x.norm,breaks=8)

xhist<-c(min(h$breaks),h$breaks)

yhist<-c(0,h$density,0)

xfit<-seq(0, 700, by=10)

yfit<-dnorm(xfit,mean=mean(x.norm),sd=sd(x.norm))

plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)),xlab="Pb",ylab="Frequência Relativa",main="Histograma de Pb ")

lines(xfit,yfit,col="green")

  • Variograma experimental

data(meuse.all)

g=gstat(id='lead',formula=log(lead)~1,locations=~x+y,data=meuse.all)

grafico=variogram(g)

plot(grafico,main=' Variograma experimental de Pb',xlab='Distância',ylab='Semivariância', col="green") 

  • Variograma ajustado

data(meuse.all)

vgm1<-variogram(log(lead)~1, locations=~x+y, data=meuse.all)

x=range(vgm1[,2])

y=range(vgm1[,3])

plot(x,y, asp = 1000, type = "n", main="Variograma Ajustado")

points(vgm1[,2],vgm1[,3],col="green",cex=1.5)

lines(vgm1[,2],vgm1[,3],col="green")

f<-fit.variogram(vgm1,vgm(0.16, "Exp", 1500, 0.5))

v<-vgm(f$psill[2], "Exp",f$range[2],f$psill[1])

ff<-variogramLine(v,maxdist=1543 ,n = 15 , min = 80)

points(ff[,1],ff[,2],col = "red")

lines(ff[,1],ff[,2], col = "red")

asp=max(x)max(y)

asp=1542.27/0.6211689=2482.851 

  • Box-plot

> > data(meuse.all)

m<-meuse.all

summary(m$lead)

boxplot(m$lead,horizontal=TRUE, col="green", main="Boxplot Meuse atributo Chumbo")

  • Dispersograma das variáveis

data(meuse.all)

g=gstat(id='lead')

h<-c(meuse.all)

plot(h$lead,h$elev,xlab="Chumbo",ylab="Elevação",main="Dispersograma dos atributos Pb e elevação", col="green")

  • Mapa de Istoreores

s.grid<-GridTopology(c( 178500, 329965),c(60,60),c(50,50))

s.grid<-SpatialPoints(s.grid)

#spatial points

data(meuse.all)

m <- vgm(0.5643942, "Exp", 535.8096, 0.07655493)

xx <- krige(log(lead)~1, ~x+y, model = m, data = meuse.all, newd = s.grid)

dfxx<-as.data.frame(xx)                   

mz<-matrix(dfxx[,3], nrow=50, ncol=50, byrow=FALSE)

X11()

contour(x =seq(178500,181440,by= 60), y=seq(329965,332905,by=60),mz,nlevels=10,

xlab="x",ylab="y",main="Isoteores de Chumbo", col="green")  

  • Mapa de Istoreores

s.grid<-GridTopology(c( 178500, 329965),c(60,60),c(50,50))

s.grid<-SpatialPoints(s.grid)

#spatial points

data(meuse.all)

m <- vgm(0.5643942, "Exp", 535.8096, 0.07655493)

xx <- krige(log(lead)~1, ~x+y, model = m, data = meuse.all, newd = s.grid)

dfxx<-as.data.frame(xx)                   

mz<-matrix(dfxx[,3], nrow=50, ncol=50, byrow=FALSE)

X11()

contour(x =seq(178500,181440,by= 60), y=seq(329965,332905,by=60),mz,nlevels=10,

xlab="x",ylab="y",main="Isoteores de Chumbo", col="green")  

Mapa com os contornos de isoteores preenchidos:

s.grid<-GridTopology(c(178500, 329965),c(60,60),c(50,50))
s.grid <- SpatialPoints(s.grid)
data(meuse.all)
m <- vgm(0.5643942, "Exp", 535.8096, 0.07655493)
xx <- krige(lead~1, ~x+y, model = m, data = meuse.all, newd = s.grid)
dfxx <- as.data.frame(xx)
mz <- matrix(dfxx[,3], nrow=50, ncol=50, byrow=FALSE)
nmz <- matrix(nrow=50, ncol=50)
for (i in 1:50)
for (j in 1:50)
{nmz[i,j]=mz[i,51-j]}
x =seq(1.0,5.9,by= 0.1)
y=seq(1,5.9,by=0.1)
filled.contour(x, y,nmz,nlevels=10,color=terrain.colors, xlab="X",ylab="Y",main="Mapa de Isoteores de Chumbo")

  • Mapa de concentração de Chumbo

data(meuse.all)

class(meuse.all)

coordinates(meuse.all)=~x+y

bubble(meuse.all, "lead", col=c("#00ff088","#00ff0088"),main="Concetrações de Chumbo(ppm)")

  • Predição do atributo baseado em krigagem ordinária

data(meuse)

coordinates(meuse)=~x+y

data(meuse.grid)

gridded(meuse.grid)=~x+y

m<- vgm(0.5232381,"Sph",880.8683, 0.1229456 )

x<-krige(log(lead)~1, meuse, meuse.grid, model = m)

spplot(x["var1.pred"], main = "Predição do chumbo em krigagem ordinária",col.regions=terrain.colors) 

  • Diagrama de bloco do atributo baseado em krigagem ordinária 

s.grid<-GridTopology(c(178260,329220),c(40,40),c(90,120))

s.grid<-SpatialPoints(s.grid)

#spatial points

 data(meuse.all)

m<-vgm(0.5232381,"Sph",880.8683, 0.1229456)

xx<-krige(log(lead)~1,~x+y,model=m,data=meuse.all,newd=s.grid)

dfxx<-as.data.frame(xx)

mz<-matrix(dfxx[,3],nrow=90,ncol=120,byrow=FALSE)

persp(x=seq(178300,181860,by=40),y=seq(329500,334260,by=40),mz,xlab="Xloc",ylab="Yloc",main="Teores de Chumbo",col="green")

  • Dez simulações Gaussianas do teor de Zn expresso por cor em função localização

s.grid<-GridTopology(c(178260,329460),c(160,160),c(22.5,30))

s.grid<-SpatialPoints(s.grid)

gridded(s.grid)<-TRUE

data(meuse.all)

m<- vgm(0.56439420,"Sph",535.8096, 0. 07655493 )

xx <- krige(log(lead)~1, ~x+y, model = m, data = meuse.all, newd = s.grid )

X11()

xx <- krige(log(lead)~1, ~x+y, model = m, data = meuse.all, newd = s.grid, nsim=10)

spplot(xx["sim1"],xlab="Xloc(0-4)",ylab="Yloc(0-4)",main="Valores Simulados-sim1")

X11()

spplot(xx["sim2"],xlab="Xloc(0-4)",ylab="Yloc(0-4)",main="Valores Simulados-sim2")

X11()

spplot(xx["sim3"],xlab="Xloc(0-4)",ylab="Yloc(0-4)",main="Valores Simulados-sim3")

X11()

spplot(xx["sim4"],xlab="Xloc(0-4)",ylab="Yloc(0-4)",main="Valores Simulados-sim4")

X11()

spplot(xx["sim5"],xlab="Xloc(0-4)",ylab="Yloc(0-4)",main="Valores Simulados-sim5")

X11()

spplot(xx["sim6"],xlab="Xloc(0-4)",ylab="Yloc(0-4)",main="Valores Simulados-sim6")

X11()

spplot(xx["sim7"],xlab="Xloc(0-4)",ylab="Yloc(0-4)",main="Valores Simulados-sim7")

X11()

spplot(xx["sim8"],xlab="Xloc(0-4)",ylab="Yloc(0-4)",main="Valores Simulados-sim8")

X11()

spplot(xx["sim9"],xlab="Xloc(0-4)",ylab="Yloc(0-4)",main="Valores Simulados-sim9")

X11()

spplot(xx["sim10"],xlab="Xloc(0-4)",ylab="Yloc(0-4)",main="Valores Simulados-sim10")

X11()

  • Mapa de concentração da mediana do atributo simulado (chumbo)

s.grid<-GridTopology(c(178260,329460),c(160,160),c(30,30))

s.grid<-SpatialPoints(s.grid)

gridded(s.grid)<-TRUE

data(meuse.all)

#set.seed(9999)

m<- vgm(0.56439420,"Sph",535.8096, 0. 07655493 )

xx <- krige(log(lead)~1, ~x+y, model = m, data = meuse.all, newd = s.grid, nsim=30)

X11()

aux=matrix(1:27000,900,30)

for (i in 1:900)

for (j in 1:30)

{ aux[i,j]=xx[[j]][i]}

for (i in 1:900)

{xx[[1]][i]=median(aux[i,])}

spplot(xx[,1], xlab="xloc(0-4)", ylab="yloc(0-4)", main="Mediana")

  •  Comparação entre o Mapa de concentração da mediana do atributo simulado e o Mapa de base, com meandro do rio Meuse acrescido.

 

library(sp)

library(lattice) # required for trellis.par.set():

trellis.par.set(sp.theme()) # sets color ramp to bpy.colors()

 

data(meuse)

coordinates(meuse)=~x+y

data(meuse.riv)

meuse.sr = SpatialPolygons(list(Polygons(list(Polygon(meuse.riv)),"meuse.riv")))

rv = list("sp.polygons", meuse.sr, fill = "lightblue")

 

scale = list("SpatialPolygonsRescale", layout.scale.bar(),

    offset = c(180500,329800), scale = 500, fill=c("transparent","black"), which = 1)

text1 = list("sp.text", c(180500,329900), "0", which = 1)

text2 = list("sp.text", c(181000,329900), "500 m", which = 1)

arrow = list("SpatialPolygonsRescale", layout.north.arrow(),

    offset = c(178750,332500), scale = 400)

## plot with north arrow and text outside panels

## (scale can, as of yet, not be plotted outside panels)

spplot(meuse["lead"], do.log = TRUE,

    key.space = "bottom",

    sp.layout = list(rv, scale, text1, text2),

    main = "Chumbo (top soil)",

    legend = list(right = list(fun = mapLegendGrob(layout.north.arrow()))))

*Os textos em verde são os comandos

© 2016 por Bernardo Rangel, Daniel Monteiro e Rodrigo Fernandes.

bottom of page